RSX-11M/M-PLUS
RMS-11 User’s Guide
Order No. AA-L669A-TC

April 1983

This manual provides information on file and task design using
RMS-11. The information includes design considerations for writing
application programs in.both MACRO-11 and high-level languages.

SUPERSESSION/UPDATE INFORMATION: This revised document
_supersedes the RMS-11
User’s Guide (Order No.
AA-D538A-TC).

OPERATING SYSTEM AND VERSION: RSX-11M Version 4.1,
RSX-11M-PLUS Version 2.1

SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation - maynard, massachus tts

First Printing, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright () 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation,

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMs EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

pECUS RSTS dilgliltiall
DECwriter o '

ZK2168

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continentai USA and Puerto Rico cail 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.0O. Box €CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internai orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

SUMMARY

CHAPTER

CHAPTER

CONTENTS

MANUAL OBJECTIVES

INTENDED AUDIENCE . & « o o ¢ o o o o o o o o o
STRUCTURE OF THIS DOCUMENT &« & &« ¢ o o o o o o &
ASSOCIATED DOCUMENTS . . &« « o o o o s o o o o o
CONVENTIONS USED IN THIS DOCUMENT . . . « « o &

DESIGN PROCESS

Record Formats . . « .+
Fixed-Length Format . .

OF TECHNICAL CHANGES . ¢ o ¢ o o o o o o o o o o @
1 RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT
1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS .
1.1.1 RECOYAS v v 4 o o o o o o o o o o o o
1.1.2 FileS v v ¢« ¢ 4 o ¢ o o o o o o o o o o
1.1.3 ACCESS 4 «¢ o o o o o o o s o o o o o o @
l.1.4 Processing . o & ¢ ¢ o o o o o o o o o
1.1.5 File Maintenance . « « « « o « o « o o &
1.2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION
ACCESS v & o o o o o o o o o o o o o o o o
l.2.1 RMS-11 Record Formats . . ¢« « o« o o o &
1.2.2 RMS-11 File Organizations . . « « o« o &
1.2.3 RMS-11 Record Access ModesS . « « « o o &
102.4 RMs-ll Utilities
1.3 RMS-11 PROCESSING ENVIRONMENT . « « o «
1.3.1 RMS-11 Task Structure « . &
1.3.2 RMS-11 Record Processing . . « « « o o &
1.3.3 RMS-11 File Processing . « « « ¢ o o o &
1.4 FILE ATTRIBUTES e o o o o & s o s e s & o
1.5 PROCESSING BY BLOCK ACCESS ¢« ¢ « o o o o &
2 APPLICATION DESIGN
2.1 WHEN TO DESIGN . ¢ ¢ o o o o o o o o o o &
2.2 DESIGN CONSIDERATIONS .« ¢ ¢ o o ¢ o o o &
2.2,1 Speed . . v e 4 s e e e s e s 4 e e e
2,2.2 SPACE ¢ ¢ ¢ ¢ o o o s o e o o o o e o
2,2.2.1 Data Storage . « o ¢ o o o o o o o o o o
2.2.2.2 Task S1Z€ « o o o o o o o o o o o o o
2.,2.2.3 Buffer Sizes .« v + ¢« o o ¢ o o o o o o
2,2.3 Shared ACCESS « 4+ o o o o o o o o o o
2.2.3.1 Bucket Locking . « « & o o o ¢ ¢ o o o o
2.2.3.2 Sharing among Access Streams . . « « « .
2.2.3.3 Programming Considerations
2.2.4 Ease of Design e o o o s o o
2.3 e e e s e s .
2.4 L] L] L] * * .
2.4 e s e e e o
204 L] . . L] . .
2.4 . . L] L] . .

S
SELECTING A FILE ORGANIZATION

e
L] L]
IR

Variable-Length Format .

¢« o o o o

e o o & & ® 4 s ¢ 0 s Pe o e s s o

e ® ¢ ® ¢ * ¢ ® ¢ & 3 & ¢ & a2 *

e & o ® o o o ¢ o o s e o o o o o

e & e & o ¢ o 0 o o 4 0 g o o o

¢« * s+ o

Page

P NN
L T L L
COoOwVwOUITULITUIUIdWWIN

CHAPTER

CHAPTER

WWWWWWWWWWwWwWWwWwwWwWwWWwWwWwwwwwwwwuwwwww w

18

A N Ll I N T L

e o o e o

Ut UTLE R RWWWLWWWLWNDE

¢ ¢ e e & & 5 6 e 8 e e & * 0 0+ s 0 o o

BWWWWWWNNN e

e e o ® © e o o ° o o o o

oUW WWWWLWWWHNH

6 o e 4 & o o ¢ o s o

. L] (] .
o e e

¢« o
N WoOoOJgaUnidxWN

O~JAU W H

CONTENTS

Variable-with-Fixed-Control Format

Stream Format . « ¢ ¢ o o o o o
Undefined Format . o+ « o« o o +
I/0 Techniques . « « « ¢ ¢ o « &

SEQUENTIAL FILE APPLICATIONS

FILE STRUCTURE . . « « .« &
RECORD SIZE . ¢ o o o o o
FILE DESIGN . . . « « « &
Data Storage Medium . .
File Allocation
Initial Allocation . . .
Default Extension Quantity
Contiguity . « « « « « « &
ACCESS SHARING . . ¢ « + =
Record Access to Sequent1al Files
Block Access to Sequential Files

e ® o o o o
¢ ¢ © o o
e ¢ o e

e Vv s & s+ 0 o

RECORD AND FILE PROCESSING OF SEQUENTIA

Record and Stream Operations
CONNECT . . . &
DISCONNECT
FIND
FLUSH . . .
GET
PUT
REWIND . . .
TRUNCATE . .
UPDATE
Record Transfer Modes

. .

® e 0 ¢ * o o

e o o . % ¢ * o

s & o © o & o ¢
e ® 4 o s & o ¢ o

Move Mode . . .
Locate Mode . .
I1/0 Techniques . .

Asynchronous Record Ope
Deferred Write
Multiple Buffers
Multiple Access Streams .
Multiblock Count
File and Directory Operatio

. .
« o e
rat

O.o .
]

o o N o o ¢ ¢ o o o o o ¢ o o o @

¢ e ® o & ¢ ° o o o o

.

.'_‘sooO.
.

RELATIVE FILE APPLICATIONS

FILE STRUCTURE . .
RECORD SIZE . . .
FILE DESIGN . . .

.
.
.
.

Bucket Size .

File Allocation . .
Initial Allocation . .
Default Extension Quantlty

o o o ®

Contiguity . . « « « « &
Maximum Record Number .
ACCESS SHARING . . « + .« =
Record Access to Relative F11es
Block Access to Relative Files .

e o o % o ° o o o

® °* o ° o o

RECORD AND FILE PROCESSING OF RELAT

Record and Stream Operations . .
CONNECT . .
DELETE . .
DISCONNECT
FIND . . .
FLUSH .
GET . .

PUT .
REWIND

0.0.’

e o ¢ & o o o
* o % o o o o+ o
e o o o o o o+ o
e o ® o o o ¢
o o o o o o o
¢ o ® o & o o
* o o o & o

* o * o & o e o
* e ® & & o+ o
® o e o o o o+ o

iv

e o o ¢ ° 4 s o @

e * o ®

. . L] - e

¢ o o

I

.

e o ¢ o ¢ o o o o o o o

o o Mo o o o o

e ® o 8 & ® o ° o o ¢ & s o o

e ® o o o e o

® o & o o o e ¢ o ITje o e o o

]

e o o & o o ¢ o o [Ne o o o * 2 0 o o o o o

FIJ o o o o ¢ o o o o o o

L}

=)

e [N e o o o © o & o & o o o

* o o o

Ll e o ¢ o o o
t

¢ o o o

. . . .

Ne ¢ o o ¢ o o

e & e ® & ® o ® 4 o & © s 6 ¢ ° ¢ o o ¢

® o & 4 0 o 0 o o g ¢ o o o

e o o o 4 & ¢ & o o

o & & & 0 4 8 4 & 4

« & o 0 o 0

e * s 0

® ¢ 0 o ® ¢ ® 4 ® ¢ ° o o

2-16
2-16
2-17
2-17

1

Il WWwWWwWwwwuwwwwwwwwww
| L I I I T |
MOWOVWOUNINNNoaaoaauTtLiddP_WWNDH

e

R A e N T B N I T L Y
[}

NP TN

i
e 1
NHOOWOJITINNAARNOUT D BWWNNNF

CONTENTS

405.1.9 UPDATE . L] L] . . . 4—12
4.5.2 Record Transfer Modes .« + ¢ ¢ o ¢ ¢« o o o+ o o 4=12
4.5.2.1 Move Mode L] . . 4-12
4.5-2-2 Locate Mode ® L] . L] . . . 4-13
4.5.3 I/o Techniques . 3 4-14
4.5.3.1 Asynchronous Record Operations . « « ¢« ¢« o+ « o 4-14
4-5.3.2 Deferred Write 4-14
405.3.3 Multiple Buffers L] . . 4-15
4,5.3.4 Multiple Access Streams . + o o« o o o o o« » » 415
4,5.4 File and Directory Operations . . « ¢« « & o+ o« 4<15
CHAPTER 5 INDEXED FILE STRUCTURE AND ACCESS
5.1 PHYSICAL FILE STRUCTURE « 4 o« o ¢ o o o s ¢ o o o 5=2
5.2 CONCEPTUAL FILE STRUCTURE o o 5-4
5.201 Data L] 5-5
5.2.1.1 Level 0 of the Prlmary Index e o o s o o s « o s 5=5
5.2.1.2 Level 0 of an Alternate Index . . .« « « &+ « « o+ 5=5
5.2.2 Indexes o . . . 5-6
5.2.3 Random Access Us1ng the RMS 11 Indexed File
Structure . ° * » o o . . . 5-7
5.2.4 Why thls structure? 3 . . . 5-8
5.3 PROCEDURES FOR PERFORMING RANDOM RECORD OPERATIONS 5-9
5.3.1 ertlng a Record L L] . L] 5—10
5.3.1.1 Simplest Case . . . « e o o o . . 5-10
5.301.2 Bucket Splitting L] L] . . . 5—11
5.3.1.3 Incremental Reorganization . « + ¢« ¢« ¢ &« & o« o 5=12
5.3.2 Getting and/or Finding a Record . . ¢« « ¢« « « 5=13
5-3.3 Updatlng a Record L] . . . 5-14
5.3.4 Deleting a Record . . + + « o . « ¢ o« o« 5-15
5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECOR
OPERATIONS * o . L] 5-16
5.5 I1/0 COST OF PERFORMING RECORD OPERATIONS 5-17
CHAPTER 6 INDEXED FILE DESIGN
6.1 RECORD SIZE e o L] s o . . . 6-1
6.2 KEY SELECTION . . s o . . o o -0 6-2
6-201 Number Of Keys L] 6-2
6-2.2 Key Data Types [o o . L] . . 6-3
6.2.2.1 Strlng Type] . LI] . . . 6-3
6.2.2.2 Two-Byte Signed Integer Type e o ¢ o o o o o s o 6-4
6.2.2.3 Four-Byte Signed Integer TYPE « « o o o o o o o 6=4
6.2.2.4 Two-Byte Unsigned Binary Type =« + « « « o« « o« o 6=5
6.2.2.5 Four-Byte Unsigned Binary TYPE « « « s o o o o o 6=5
6.2.2.6 Packed Decimal Type . . . L] . o o . . e o e o . 6-6
6.2.3 Key Slze o s L] s o . . . 6-6
6.2.4 Position of Key in Record e o s s o s s s s s o 6=7
6.205 Key Characterlstlcs . e o e » . . . 6-8
6.2-5.1 Duplicates [. s & o . . . 6-8
6-2-5.2 Changes L] 6-9
6.2.5.3 Null Key . . .] L] 6-10
6.3 AREAS e o e o o 8 s 8 + e s e e e o o o o o o o 6-10
6.4 PLACEMENT CONTROL .+ &« &« « « o o o o o « o o o o« 6=13
6.5 BUCKET SIZE (] LI 1 . . 6—15
6.5.1 Bucket Size for Prlmary Index e e ¢ o o s o o 6=16
6.5.2 Bucket Sizes for Alternate Indexes 6=19
6.5.3 Program Syntax e . ¢ o 6-21
6.6 FILE ALLOCATION « o o ¢ o &« & e e s e e o s o b6=22
6.6.1 Initial Allocation L] 6-22
6.6.2 Default Extension Quantity . . « ¢« ¢ ¢ ¢ ¢« o » 6=26
607 POPULATION TECHNIQUES ¢ o s+ a e e o e e o o o o 6-26
6.7.1 Ascending Order by Primary Key « « « « o« o o » 6=27

CHAPTER

CHAPTER 8

©0 00 0O 00 0O CO 00

e o e e o o s o

APPENDIX A

Bl g

o & o & ¢ o o

NN

SR WWwwwN

-

CONTENTS

Random Insertions after File Population
Bucket Fill Size .+ v ¢ v ¢ ¢ o« o o o o &
Mass Insertion . « o« « o« o o o o o o o &

RECORD AND FILE PROCESSING OF INDEXED FILES

ACCESS SHARING &« v « o o o o o &
Record Access to Indexed Files
Block Access to Indexed Files

RECORD AND STREAM OPERATIONS . .
CONNECT . .
DELETE . . .
DISCONNECT .
FIND . . .
FLUSH . .
GET . . .
PUT . . o
REWIND . B
UPDATE

RECORD TRANSFER MODES
Move Mode
Locate Mode

I/0 TECHNIQUES . « « «
Asynchronous Record Opera
Deferred Write
Multiple Buffers . . .
Multiple Access Streams .
Sequentially Reading erte—Shared Fil

FILE AND DIRECTORY OPERATIONS . « ¢ « « o

o o . . .

" e s e o o
.
¢ s o o o o

.
.
.
.
-

¢« o o .
o o

.
.
.
.
.
.
.
.
.

e ©® ¢ * o v

o o o * & o o

e o o e o o o
.

e % o & e * o o

.

.
.
.
.
.
.
.
.
. .
(o)

¢ e o

i

e ¢ o N e o o o o o o & o o o
® e ® & * ¢ * o & 4 & o * o

o.ﬂ.t.n.o.c.v.oo

00("'00.0.0.0

[o}

e ® & & o * o
e % o * o * o o

e o
. .
- .
e o
. .
. °
. .
o o
iles

* s o o

e o ¢ o o o o o o

e ¢ o * o ° ¢ o o

e o & & o % ¢ & 9 o o o o

e 0 o & o 0 ¢ ¢ o o

.

TASK BUILDING AND COMMON OPTIMIZATIQN TECHNIQUES

TASK BUILDING WITH RMS-11 ROUTINES .
Disk-Resident Overlays . . . « . .
ODL FileS . & v o o o o o« o o o &
Memory-Resident Overlays . . « « o « o« &
Task Building against the RMS-11 Resident
Library .« o o o o o o o o o o o o o o
Using RMS-11 Operations from within Your
Resident Library . . . « . . « + « &
Deciding Between Types of Overlays .

PROGRAM DEVELOPMENT « e e s
Flow of Operations Should Reflect RMS-1
Structure ¢ e ¢ 0 . .

1
Task Builder Considerations
VIRTUAL-TO-LOGICAL-BLOCK MAPPING
Retrieval Pointers on Disk . . +. « « o &
Retrieval Pointers in Memory
Optimizing Window Turning . . . « « .+ .
OTHER OPTIMIZATIONS . ¢ ¢ ¢ o o o o o o o
Allocating More Resources to the Task .
Disk USage . « o o o o o o o o o o o« o
FILE SPECIFICATION PARSING
STANDARD FILE SPECIFICATION SYNTAX
DEVICE v v ¢ o o o o o o o o o o o o o
DIirectory .« o o o« o o o o o o « o o o @
NamMe o o o o o o o o o o s o s o o o o o
TYDE o v o o o o o o o o o o o o o o o
Version . . . « « .« . . e e e s e .
ANSI MAGNETIC TAPE FILE SPECIFIC TION SYNTA

DEeviICe &+ v ¢ ¢ ¢ ¢ 4 ¢ o o o o o o o o @

vi

® o ° o e o ¢ o o (Yo

Q
1]

o o

e ¢ o o o o ¢ s o

e o o e

« & o o o o

o o o o 8 o @

> w:DD’?iP b
B W W N

6-28
6-28
6-29

| L R
CoowvwooooodIJoaaoauvuuuwwwddNDDH =

\l\l\l\]\l\]\l\l\lTl\l\l\l\l\l\l\l\l\)\l

R
]

CONTENTS

A-4
A-5
A-S
A-5

2.2 DIirectory =« o o o o ¢ o o o o o o o o
2.3 Quoted String . ¢ ¢ ¢ v ¢ o o o o o o
2.4 Version . . . o . o o o o o
3 GENERATION OF A FULL FILE SPECIFICATION o

¢ o o o
* o ¢ o
e o o o
e o o o

APPENDIX B REMOTE FILE AND RECORD ACCESS VIA DECNET

B.1 REMOTE NODE SPECIFICATION . . ¢ «o o « o o o o o o
B.2 REMOTE ACCESS ENVIRONMENTS . . . e s o e o s e
B.3 REMOTE ACCESS POOL CONSIDERATIONS e o s o e o o

m?m
WWN

INDEX

FIGURES

FIGURE Record Formats . « « o« « + &
FileS v 4 o o o o o o o o &
Sequential File Organization
Relative File Organization .
Indexed File Organization
Indexed File Example . . .
Record Access Modes . . .

RMS-11 Task Structure .

¢ o ¢ 4 o o o
[}

| M=
[

)

L]
I o
] Ll el |

Records Spanning Blocks . .
Time Factors in an I/0 Operati
System Protection Concepts .
Bucket Locking Example
Count Field on Disk and Tape .
RMS~11 Task Structure
RMS-11 Task Structure . .
Indexed File with and w1thout A
Formatted Bucket
Index as a Pyramid
Format for Secondary Index Data Recor
Example of a Primary Index
Search Time CUXVES . « « o o« « o o+ o
Single-Area Indexed File
Example of Single-Area Indexed F11e
Two-Area Indexed File
Example of Multi-Area Indexed F11e
RMS-11 Task Structure
Source-to-Task Sequence . . « . .
RMS-11 TasksS « o« o o o o o o o o o

.
.
.
1

1
¢ o & o 8 o * 4 ° ¢ s s * o o

eas

->?ow
=
BNNWNREFHFONORBRLOWWUOABRIBROANU ™ WN

. .
. .
. .
. .
. .
. .
on .
. .
. .
. .
. .
rea
. .

i
NHHEHBWNHFOOOA®WNHERFEBWNHFOONOAUILBWNDME

U‘U‘IU‘ll{lU‘lU‘ll

¢ o ¢ ¢ o o

Ao
]

WVONAANANTANANVIUTVIOUIN D WNNNNRF R
!

@ ® o o o e o o o * o e o O o % & * & * s ° ¢ & ¢ o o o

e & & & o o o & o o s & 5 & 9 & 5 S o+t g O ¢ * ¢ * o =

€ 9 & 8 4 8 o * ¢ % o % e * o O ¢ 0 ¢ 6 o o ¢ © 4 ® & @

¢ ® 9 & 9 8 ¢ * ¢ & 9 ° g & o 0 o * 3 * 9 O » * g o 4 o

® o o o o o o o o fue o e € o 9 4 06 o * ¢ e o ¢ 4 ® & @

1

¢« ¢ o o o
.

0031

11

‘e e & & ¢ e o @ ¢ * 4 & o & o 0 o 0 ¢ & 4 0 ¢ * ¢ & 4 @
L]

TABLES

TABLE Record Formats and File Organizations 1-20
File Organization Characteristics and

Capabilities . ¢« &« ¢ o ¢ ¢ o o o o o o o o o &«
File Organization Advantages and Disadvantages
End-of-Block Indicators
Sequential File Data Sizes (in bytes) .
Relative File Data Sizes (in bytes) . .
I/0 Cost of Performing Record Operations
Key Data TYPES « ¢ ¢ o o o o o o s o o o«

N
1 11
-

AUV WWN
[
HEHENDEHEN
e o o o o
o & o o
e ¢ o ¢ o ¢ o
L]
w [}
i
w

.
.
.
.
.

vii

PREFACE

MANUAL OBJECTIVES

This document is a guide to using RMS-11l capabilities and operations
in file and task design for application programs written in either
MACRO-~11 or high-level languages.

INTENDED AUDIENCE

This document is intended for application programmers who want to

achieve

optimal performance with new applications they are writing or

with existing applications.

NOTE

Only MACRO-1l programmers can use the
full set of RMS-11 capabilities,
Subsets of these capabilities are
available to high-level language
programmers., See your high-level
language documentation to determine:

e What RMS-11 facilities you can use in
your high-level language

e The syntax for using these facilities

STRUCTURE OF THIS DOCUMENT

This manual contains eight chapters and two appendixes:

Chapter 1, RMS-1l1 Concepts and Processing Environment,
introduces the concepts of data organization and access and
the RMS-~1ll implementation of these concepts.

Chapter 2, Application Design, presents general considerations
that apply to application design and information that will
help the application designer select a file organization.

Chapter 3, Sequential File Applications, discusses sequential
file structure, design, and processing.

Chapter 4, Relative File Applications, discusses relative file
structure, design, and processing.

ix

PREFACE

Chapters 5, Indexed File Structure and Access, 6, Indexed File
Design, and 7, Record and File Processing of Indexed Files,
discuss indexed file structure, design, and processing.

e Chapter 8, Task Building and Common Optimization Techniques,
describes techniques that can be used to optimize application
programs that use RMS-11, regardless of the file organization
selected.

e Appendix A, File Specification Parsing, documents RMS-1l's
handling of file specifications.

e Appendix B, Remote File and Record Access via DECnet, briefly
describes the remote access environment and remote file
specification syntax.

ASSOCIATED DOCUMENTS

In addition to this wuser's guide, the RMS-11 documentation set
contains the following manuals.

RSX-11M/M-=PLUS RMS=11: An Introduction presents the major concepts of
RMS-11, introduces the RMS-11 operations, and defines key terms
required for understanding RMS-11 capabilities and £functions. You
should read the introduction before proceeding to other manuals in the
RMS-11 documentation set.

The RSX=11M/M-=PLUS RMS-11 Macro Programmer's Guide is a reference
document for MACRO-11 programmers that describes the macros and
symbols that make up the interface between a MACRO-1l1 program or
subprogram and the RMS-1ll1 operation routines.

The RSX=11M/M-PLUS RMS~11 Utilities manual is both a user and a
reference document for all users, both programmers and nonprogrammers.
It describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files.

In addition, the Mini-Reference Insert includes an easy-reference
guide for wusers who are familiar with RMS-11 and its documentation.
It summarizes the RMS-11 utilities and error codes.

CONVENTIONS USED IN THIS DOCUMENT

Convention Meaning

UPPERCASE Uppercase words and letters, used in format examples,
indicate that you should type the word or letter
exactly as shown.

lowercase Lowercase words and letters, used in format examples,
indicate that you are to substitute a word or value
of your choice.

quotation marks The term "quotation marks" refers to double quotation
marks (").

apostrophes The term "apostrophe" refers to a single quotation
mark (').

[1

TKB> //

PREFACE

Square brackets indicate that the enclosed item is
optional.

A horizontal ellipsis indicates that the preceding
item(s) can be repeated one or more times. For
example:

file-spec|,file-spec...]

A vertical ellipsis indicates that not all of the
statements in an example or figure are shown.

In examples of commands you enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in black
letters. All the 1lines you type are shown in red
letters.

Unless otherwise noted, all numeric values are represented in decimal

notation.

Unless otherwise specified, you terminate commands by pressing the

RETURN key.

Xi

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2.0 supports random access to fixed-format disk
sequential files and sequential block access to disk files of any
format and organization.

The RMS-11 Version 2.0 resident libraries are task independent. This
means that once a program is linked with this library, the library can
be rebuilt or replaced without requiring that the task linked to it be
rebuilt.

RMS-11 Version 2.0 contains no 1library equivalent +to the RMSSEQ
memory-resident library included with RMS-11 Version 1.8. The RMSRES
resident library or the disk-resident ODL files can be used to obtain
equivalent functionality and performance.

New versions of the RMS-11 Version 1.8 ODL files are provided. These
OoDL files are: RMS11S.0DL, RMS11X.ODL, RMS12X.ODL, and RMS11.0DL.
The Version 1.8 ODL files will still work with Version 2.0, but the
new versions will be more efficient. RMS-1l V1.8 ODL structures other
than RMS11S.0DL, RMS11X.ODL, and RMS12X.ODL may not work correctly
with the RMS-11 V2.0 code; when in doubt, verify them by comparison
with the V2.0 RMS11.0DL file. 1In addition, two new ODL files are
provided with Version 2,0: RMS12S.0DL and DAP11X.ODL.

Files with stream and VFC records can now be created on unit-record
devices to avoid the need for special-case code in copy-type
operations,

e For VFC files, the record header 1is thrown away on output
unless the file is a "print format" file.

e For stream files, if none of the 3 carriage control bits is
set (print file format, carriage control, or FORTRAN carriage
control), and if the 1last character is not a linefeed,
formfeed, or vertical tab, the carriage-return/linefeed
(CR/LF) is appended at the end of the record.

e For stream files, if either the carriage control or FORTRAN
carriage control attribute is set, and if the 1last 2
characters of the record are CR/LF, the trailing CR/LF is
stripped off and then definition of the carriage control
attribute (CR or FTN) is applied.

For similar ease-of-copying reasons, RMS-11 now allows creation of
relative and indexed files for output to nondisk devices (for magtape,
however, the record format must be variable length or fixed length).

The RMS-11 File Design Utility (RMSDES) is a new utility that allows
you to design and create files interactively. It is fully documented
in the RSX-=11M/M-PLUS RMS-11l Utilities manual.

RMS-11 Version 2.0 supports five new directory operations: SENTER,
SPARSE, $REMOVE, S$RENAME, and $SEARCH. These operations are fully
documented in the RSX-11M/M-PLUS RMS-11l Macro Programmer's Guide.

xiii

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2.0 supports a new wildcard file specification facility
and a new print-record output handling format. These are also fully
documented in the macro programmer's guide.

User-provided interlocks allow a special, limited form of sequential
file sharing among a group of accessors that includes at most one
read/write accessor and any number of read-only accessors.

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 Version 2.0 will allow file and record access to files
on remote network nodes, if those nodes include an RMS-ll-based file
access listener (FAL).

For magtape, RMS-11 now allows fixed-format records to be less than 18
bytes.

Files with stream or VFC records can now be created on unit-record
devices. In addition, RMS-11 now allows the creation of relative and
indexed files for output to nondisk devices, although they will be
treated as sequential files.

<CTRL/Z> and <ESC> are no longer recognized as record terminators for
stream files, and <CTRL/Z> is no longer recognized as a file
terminator for stream files.

RMS~11 Version 2.0 pads stream files with null characters, to the high
block of the file (not just to the end of the current block).

The memory-résident library RMSRES can be clustered with any other
resident library that supports clustering.

On RSX-11M-PLUS systems that include hardware support for supervisor
mode, RMSRES can also be used in supervisor mode.

On RSX-11M systems, an optional subset library, which contains support
for sequential and relative files only, is available.
NOTE
All new RMS-11 features are fully
accessible only to MACRO-11l programmers.

See your high-level language
documentation for supported features.

Xiv

CHAPTER 1

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Your business, whether commercial, scientific, governmental, or
educational, relies on data. That data indicates the current state of
your business and helps you control the future of the business.
Therefore, you want fast, efficient access to the right data when you
need it.

You are familiar with dealing with data on paper and know that records
of transactions and reports on your business's activities can occupy a
very large number of file folders. You also know that finding exactly
the data you need can be a time-consuming process.

Computer hardware, however, with its speed and mass data storage
capabilities, provides the means for fast, efficient access to data.
Computer software provides the means for translating the data from the
format you use to a format the computer system can handle -- and back
again, ‘

RMS-11 is such a translater between you and your system. This chapter
introduces RMS-11 in terms of general concepts of data organization
and access, which apply regardless of whether data is stored on paper
or within a computer's memory. It then discusses the RMS-11
implementation of data organization and access, and the RMS-11 data
processing environment.

1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS

This section examines the general concepts of data organization, using
images from the noncomputer environment you may be most familiar with.

l.1.1 Recorxds

When data is stored on paper, it is recorded in groups of items whose
form is repeated throughout the data. Each group of items is called a
record. Within each record are the specific items of data you are
concerned with,. For example, all the information on an employee
constitutes a personnel record; all the information on a stock item
constitutes an inventory record.

On paper, a record can be a form; different types of records require
different forms. Some forms are always the same length; their
information does not expand with time or use. For example, a product
information form does not vary in size. If the facts about a product
change, you fill out a new form. If a new product is added, you also
£ill out a new form,

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Other forms vary in length with time and use, continuing on to new
pages as they grow. For example, an employee with the company for 10
years has more data in his or her personnel record than a new
employee.

Other forms might use a combination of these two formats. For
example, a record of service on a piece of equipment might begin with
control information describing the specific piece of equipment (name,
model number, date of installation, and so on) and continue on to new
pages documenting the service performed on it.

Figure 1-1 illustrates various record formats.

PRODUCT RECORD SALARY HISTORY - E.C.O. HISTORY
P — 1 —
A W \map A O]
— e Ny A A Vi]
——— 6 ——— _ﬁ"\v Ca H B
oy \ g = = g
"X Y e — v -~ | |
P R _Q A V7 a =
—— A s e %) 1 o
o= = afefefefe
—— ———— —— a
END (MAY CONT.) H
i (MAY CONT.) B
1 (MAY CONT.) | (MAY CONT.) H =
l (MAY CONT.) l (MAY CONT.) HH M
| (MAY CONT.) [-
(MAY CONT.)
(MAY CONT.) |5
(MA NT.)
ZK-1170-82

Figure 1-1: Record Formats

1.1.2 Files

When data is stored on paper records, it 1is usually gathered into
files and stored physically in filing cabinets, organized by related
records. For example, all employee records might be stored in one
file and placed in one drawer of the filing cabinet.

A file not only keeps related data in one place, it also segregates
that data from other, unrelated data.

As data grows, the file and storage requirements become more
complicated, and the number of filing cabinets multiplies. Then, the
files acquire names or numbers, the drawers acquire signs indicating
the contents of the drawers and who may use them, and
cross-referencing systems are introduced to help locate data. These
identifying characteristics and restrictions upon who may read or
alter specific files can be called attributes.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-2 illustrates data storage using filing cabinets.

ZK-1167-82

Figure 1-2: Files

In general, the person who uses a file establishes a method of
organizing the records within it. This method reflects the file's use
and dictates what information is needed and how much time is required
to locate a record within the file.

There are several typical methods for organizing records in a file,
depending on how the records are used. If you generally use all the
records in a file whenever you open it (that is, you have little or no
need to locate individual records in the file) and the order of the
records is not important, then you can organize the records
sequentially:

e The records assume the physical sequence in which they are
inserted into the file (that is, records are appended to the
file).

e No empty spaces are left in the sequence of records, where
records could be inserted later. Each record, except the
first, has a record before it; each record, except the last,
has a record following it.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Employee payroll records, for example, might be kept in a sequential
file. Because all the records must be accessed every time the payroll
is done, sequential file organization would allow easy access to the
records.

The overhead and maintenance for sequential files is minimal. To
insert a record into the file, you simply put it after the last record
already there. Figure 1-3 illustrates sequential file organization.

ZK-1168-82

Figure 1-3: Sequential File Organization

For more access flexibility than sequential files, if you want to be
able to locate individual records easily, you can set up a series of
file folders and number them in sequence from first folder to last.
Each folder is the same size; it holds only one record, but it can be
empty. Thus, you do not have to look sequentially through the records
to locate the one you want (although you can if you want to access all
the records). You use the numbers on the folders to locate or insert
records; each record will be numbered relative to the beginning of
the file. The numbers can relate to some numbering system meaningful
to your business: for example, order numbers or part numbers.

Figure 1-4 illustrates relative file organization.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1171-82

Figure 1-4: Relative File Organization

If you have a large file and most of the time you want to be able to
locate individual records, you may want to index your files. Indexing
is useful when you want to be able to use several kinds of information
to locate records. For example, in an employee file, you may want to
use last-name information to obtain a report on all employees, and
job-designation information to obtain a report on all clerical
employees.

When you open an indexed file drawer, you find records filed with
numbered tabs separating them. At the front of the drawer is a set of
small card files, containing groups of cards separated by dividers.
The cards in each of these small card files are an index to the
records at the back of the file. To insert a record in the file, you
find the data item marked "key" on the record, and using that
information, consult the appropriate index to determine where the
record should be inserted. Figure 1-5 1illustrates indexed file
organization.,

To find a record in an indexed file, you look for the specific key
information in the appropriate key file and use that information to
locate the record. For example, if you want the record of a
transaction with the Q,R,&S Company, you open the indexed file drawer
for transactions, which contains data records filed at the back and
indexes at the front. Figure 1-6 illustrates this example.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

ZK-1169-82

Figure 1-5: Indexed File Organization

QUEEG CO

|

RHESUS INC

}

ROOT

Hitelll

ZK-1175-82

Figure 1-6: Indexed File Example

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You know that company name is the primary key for records in the file
and that index 0 indexes the primary Xeys. The first record in index
0 is the root, which lists selected primary key values, that is, the
company names, in alphabetical order. Not all company names appear
here: instead, a small subset of names, distributed fairly evenly
across the full set of names, is used as the highest level of
indexing. By selecting one name, you establish the region of the file
(range of names) that interests you.

You look down the list until you find a name that either matches
Q,R,&8 or occurs after this name in the alphabet. You find Rhesus,
Inc with the number 3 alongside it.

You put the root record back in the file and go to the first divider
and the third index record behind it. Again, the set of names here is
incomplete: only a small set of names distributed fairly evenly
across the range covered by the highest level index entry exists.
This provides an intermediate level of indexing, and further limits
the range of names in which you are interested.

Rhesus, Inc is the last entry on this card, but you scan the list and
find the name Queeg Co, which is the first entry at or after Q,R,&S in
alphabetical sequence. The entry for Queeg Co has the number 7
alongside it.

So you reach into the data records at the back of the drawer to tab
number 7. You search sequentially through the records behind this tab
until you find the record of the Q,R,&S transaction.

For another example, using the same transaction file, suppose you want
to find a record but all you know 1is 1its transaction number.
Fortunately, the second alternate key for the file is transaction
number. Index 2 indexes the second alternate keys (recall from the
previous example, that the indexes are numbered starting with primary
index 0). You look at the root record in index 2 and move through the
index as you did in the previous example until you find a card listing
the transaction number you are looking for. Next to the number is the
code 7/5.

So you reach into the data records at the back of the drawer to tab
number 7 and count back to the fifth record behind the tab. You find
that the transaction you are looking for was made with the Q,R,&S
Company.

Here, only one level of indexing -- the root record -- was used. If
many records exist in the file, another intermediate level would also
be used, as it was in index O. Use of intermediate index 1levels
allows the number of entries you must scan in each level to be small,
regardless of the total number of records in the file.

l.1.3 Access

Once you have records organized in a file, you can get, or access,
them in two ways:

@ You can search all the records one after the other. This is
called sequential access.

You can use an identifier to 1locate an individual record.
This is called random access.

[=

Note that access means not only retrieving a record from a file but
putting a record into the file as well.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-7 illustrates the random and sequential access modes.

ZK-1172-82

Figure 1-7: Record Access Modes

Sequential Access

For sequential access, you pick a point in the file and access the
records beyond that point one at a time. At times, the starting point
is the beginning of the file because you want to look at, or access)
each record in the file. Other times, you may begin midway through
the file.

To read each record, you take it out of the file, marking the position
of the record you just removed with a card or some other marker so
that you know:

® Where to put the record back into the file

® Where the next record is
To insert records sequentially, you reach into the drawer to the place
where you want the records to go and mark the position of that place.

Often, the point at which you will insert the new records will be the
end of the file. At other times, it may be midway through the file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You insert the records by taking the first record from the stack of
new records and slipping it into position in the file. You then mark
the position after the record you just inserted and add the next
record in that position. You continue in this manner until all the
new records are inserted.

Note that in both retrieving and inserting records you move through
the records consecutively. Each record is retrieved or inserted with
respect to the record accessed right before it.

Random Access

For random access, you determine the location of the record you want
on the basis of some identifier, rather than on the basis of the
record's position within the file. 1If, for example, you have a 1list
of 1locations of records in the file, you can reach into the file to a
record's exact location. Each record selection is independent of the
previously accessed record and of the next record to be accessed.

The record identifier can be a number, as for relative files, or it
can be a key, as for indexed files. Or, the identifier can be a
physical location within the file drawer; for example, you could
place each record in a numbered slot within the file drawer and use
the slot number to access the records in the file. The slot number
would be the address of the record. This type of random access could
be used with any type of file organization.

Often, you will want to switch the mode of access you use. You nmay
want to use random access to find the first record in a series and
then use sequential access to retrieve all the records in that series.
For example, if your employee records are grouped by department codes
within the file, you can use a specific department code as the
identifier to randomly access the first record with that department
code and then switch to sequential access to consecutively read all
the records with that code.

Context

In either type of access, sequential or random, the marking of
position in the file 1is important. This is called context: the
position of the record you are accessing is the current record, and
the position of the record that follows it is the next record.

Access Control

One advantage of the segregation of data provided by files |is
controlled access. Some files, such as budget or payroll, should be
available to only a small group of authorized people. Other files,
such as inventory or transaction files, may be used by larger groups
of people. And some files, such as the telephone directory, must be
accessible to everyone.

Files allow you to control who can use what data. You can 1lock the
filing cabinet that contains the payroll data and give keys to
yourself and the payroll manager only. 2Pnd you can distribute
telephone directories to every employee.

In addition, within a file, you can further control how the data can
be wused within the group of authorized users. Some users may be
allowed to write new data in the file or to modify existing data,
while others may be allowed only to réad the data.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.1.4 Processing

Once you locate, either sequentially or randomly, a record's position
within a file, you will probably want to do something with the record
that belongs there. Record operations fall generally into the
following categories:

e Verify that the record exists in the right location
® Read the record; that is, examine its data contents
e Insert a record in the position that you have located

® Revise the contents of the record; that is, modify some of
its data contents

® Remove the record from the file

1.1.5 File Maintenance

Once you establish files and their records and begin wusing them
regularly, you will want to be able to maintain them to ensure both
the protection of the data within them and their continued usability.

Typically, maintenance might include the following activities.

e The data in a file is valuable or you would not keep it. You
should have duplicates of your records in some other place in
case something happens to the originals. Therefore, you need
the ability to back up files.

e If something does happen to your original data, you must be
able to obtain, or restore, the duplicate records.

® You need the ability to list, or display, your files, with
their names and other attributes. .

e Files often grow very large and their usage can change over
time. Therefore, you may want to change a file's organization
from sequential to indexed; or you may want to reload a file
that has grown very 1large to use space more efficiently.
Conversely, usage and file size might decrease and you may
want to make a file simpler. It is also possible that the
information in one file is suitable for another application.
In all these cases, you would want to be able to convert a
file into a new one, perhaps changing some attributes
(including organization) to make it more usable.

® You want to be able to design and create files that you
require.

® Creating an indexed file and putting records into it can be
complicated and time-consuming. You would want a procedure --
indexed file loading -~ that would produce an optimal indexed
file quickly and efficiently.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND ACCESS

RMS-11 provides file structure capabilities that allow you to organize
your data within a computer's memory using the same concepts that were
described in Section 1.1 for paper records in filing cabinets.

The following sections briefly present the RMS-11 file structure
capabilities. For more details, see RSX-11M/M-PLUS RMS-1l1l: An
Introduction.

1.2.1 RMS-11 Record Formats

RMS-11 supports the following record formats that allow you to define
the size of your data records:

e Fixed length -- Every record in the file is the same size.

e Variable length -- Records in the file are of different
lengths, up to a maximum size that you can optionally specify.

e Variable with fixed control -- Records in the file are of
different lengths, up to a maximum size that you can
optionally specify, and in addition, a fixed-length control
area precedes the data.

® Stream -- Records consist of a continuous stream of ASCII
characters delimited by a special terminator character or
sequence of characters.

e Undefined -- Records in a file may have no record format or
may be in a format different from the four standard RMS-11
formats.

RMS-11's support of stream and undefined record formats provides
limited support for non-RMS-11 files.

1.2.2 RMS-1ll1l File Organizations
RMS-11 supports three file organizations:

® Sequential -- Records are arranged within the file in the
order in which they were written into the file.

® Relative -- Records are stored in the file 1in cells, or
fixed-length units of storage, one record per cell. The cells
are numbered sequentially. These numbers, called relative

record numbers, are identifiers for the records.

e Indexed -- Records are arranged in the file in ascending order
by key. A key is a data field within the record that RMS-11
uses as an identifier to access the record. BAn indexed file
must have one primary key and may optionally have other
alternate keys.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.2.3 RMS-11 Record Access Modes

RMS-11 provides three record access modes for storing and retrieving
records in files:

® Sequential - RMS-11 stores and retrieves records
sequentially, one after another.

e Random by key -- RMS-1l1 uses either a key (for an indexed
file) or a relative record number (for a relative file or for
a disk sequential file with fixed-length format records) as an
identifier to gain direct access to an individual record in
the file.

® Random by record file address (RFA) —-- RMS-11 uses the RFA as
an identifier to gain direct access to an individual record in
the file. The RFA is a unique identifier that RMS-11
establishes for every record that it writes into a disk file.

l1.2.4 RMS-11 Utilities

RMS-11 provides utility programs that can help you perform file and
record maintenance:

® RMSBCK -- The RMS-11 File Back-Up Utility transfers the
contents of an RMS-11 file to another file, which may be on
another device, to maintain the file should the original file
be lost or damaged.

® RMSRST ~- The RMS-11 File Restoration Utility transfers files
that were backed up using RMSBCK back to you so your programs
can access them.

® RMSDSP -- The RMS-11 File Display Utility produces a concise
description of any RMS~-11 file, including back-up files.

® RMSCNV -~ The RMS-11 File Conversion Utility reads records
from an RMS-11 file of any organization and loads them into
another RMS-11 file of any organization.

® RMSDES -- The RMS-~1l1 File Design Utility allows you to design
and create sequential, relative, and indexed files.

e RMSIFL -- The RMS-11 Indexed File Load Utility reads records
from an RMS-11 file of any organization and loads them into an
~indexed file.

1.3 RMS-11 PROCESSING ENVIRONMENT

The RMS-11 software routines organize data on your computer,
implementing the concepts discussed in the previous sections, and
provide the interface between your application programs and the
computer system.

Your computer system consists of layers of hardware and software:

® The hardware devices -- magnetic tapes and disks -- to store
the data. '

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

The operating system software -- file control processor,
device drivers -- controls the hardware to maintain files.

® RMS-11 software controls the internal structure of files (as
described in Section 1.2).

® Your application program makes use of these hardware and
software facilities to process data records and files.

1.3.1 RMS-1ll1l Task Structure

You use the RMS-11 software routines by combining them with a program
you have written in a language that implements RMS-11l.

NOTE

Only MACRO-11 programmers can use the
full set of RMS-11 capabilities.
Subsets of these capabilities are
available to high-~level language
programmers. See your high-level
language documentation to determine:

e Which RMS-11 facilities you can use
in your high-level language

e The syntax for using these facilities

Once you write your program, you convert it to object code, using
either a compiler or an assembler.

To combine your object code with the RMS-11 routines, you use the task
builder, which converts object code (modules) to an executable form
called a task. In the process, the task builder not only combines
different object modules, but may also arrange the task so that some
executable modules overlay each other when the task is run.

You can combine RMS-11 routines with your object code in either of the
following ways:

e In the task itself, with nonoverlaid routines or a
disk-resident overlay structure

e In memory-resident overlays, a form apart from your task

The primary difference between these techniques is that
memory-resident overlays can be shared among programs. Nonoverlaid
and disk-resident overlaid routines cannot be shared; each accessing
program must have 1its own copy of such routines. In addition,
memory-resident overlays eliminate the 1I/0 operations needed to bring
disk-resident overlays from disk, thereby making your tasks run
significantly faster,

In either case, your-task takes a logical form in which program code
exists 1in one part of the task and the RMS-11 routines run in another
part. When your program performs an RMS-11 operation, it sets up the
necessary parameters and data and calls the appropriate RMS-11
routine. Control jumps to that part of the task, the routine runs to
completion, and control returns to your program. Figure 1-8
illustrates this logical structure.

RMS~11 CONCEPTS AND PROCESSING ENVIRONMENT

|« NUMBER OF FILES OPENED SIMULTANEOUSLY |
| * BUCKET SIZES

USER BUFFERS ﬂ

/0
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES

ZK-1174-82

Figure 1-8: RMS-11 Task Structure

Also part of the task are storage structures, which generally take
three forms:

User buffers -- These buffers are used to pass data records
between your program and RMS-11l. ' They are available to your
program and the data in them can be manipulated, read,
changed, used for calculations, and so on.

I/0 buffers -- For each file your program has open, RMS-11
normally requires at least one internal I/O0 buffer. All data
going to or coming from disk is stored in an 1/0 buffer as
follows:

- RMS-11 requests the file control processor to move block(s)
from a disk file into this buffer to satisfy your program's
requirements. Each request normally specifies the same
number of blocks, called an I/0 unit. The size of the I1/0
unit depends on the file organization, file design, and
settings at acdess time (such as multiblock count).

- RMS-11 moves records between the I/0 buffer and the user
buffer. Your program can also directly access a record
within the 1/0 buffer in certain restricted circumstances.

Control structures -~ RMS-11 <control structures, called
control blocks, are used to communicate between your program
and the RMS-1l1 routines and with each other. Some are
accessible to your program; others are for RMS-11 internal
use only.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1.3.2 RMS-11 Record Processing

The RMS-11 stream and record operations are the interface between your
program and the data records your program requires.

Before your program can access records in a file, the file must be
open and an access stream must be initiated.

NOTE

Most high-level languages do not support
access streams at the user level. They
use the RMS-11 access stream facilities
to implement their own file access
techniques.

An access stream is a path to the file's data records; record
operations are performed via that stream, one operation at a time.
RMS-11 keeps track of the stream's position, or context, in a file, in
terms of current record and next record. The stream's position
changes at the completion of an operation. Chapters 3, 4, and 7
discuss context for record operations with the different file
organizations.

The stream operations control the stream associated with a file. They
are:

e CONNECT -~ initiates an access stream.

e DISCONNECT -- terminates a stream.

e FLUSH —-- writes the currrent contents of I/0 buffers to the
file.

e FREE -- releases control of the record or block most recently

accessed (and locked) by the stream.

@ REWIND -- resets the stream context to the first record in the
file.
e WAIT -- suspends processing until an outstanding asynchronous

operation is completed.
The record operations process records within a file. They are:

@ FIND -- reads a record from a file to an I/O buffer and sets
the current-record context to that record.

® GET -- reads a record from a file to an I/0 buffer and then to
a user buffer, and sets the current-record context to that
record.

@ PUT -- writes a new record from a user buffer to an I/0 buffer

and then to a file.

® UPDATE -- transfers a modified record from a user buffer to an
1/0 buffer and then to a file, overwriting the previous copy
of the record in the file.

® DELETE -- removes an existing record from a relative or
indexed file.

TRUNCATE -- effectively deletes all records in a sequential
file from the current record to the logical end-of-file.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

For the FIND, GET, and PUT operations, your program specifies the
record access mode ~- sequential, random by RFA (FIND and GET only),
or random by key -- which determines which record is the target of the
operation.

See RSX-11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detailed 1introduction to record processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the record operations work
depending on the file organization selected and (for FIND, GET, and
PUT) the access mode specified.

1.3.3 RMS-11 File Processing

RMS-11 must manipulate the contents of files so that it can process
records. However, RMS-11 does not directly perform the actual file
manipulation, and the flow of data, control, and overlay segments that
the file manipulation entails. RMS-11 issues requests to the file
control processor to perform the actual I/0 and other operations on
the files. Thus, the file control processor's internal operation,
while invisible to RMS-11, can affect your program's performance.

The file control processor is not concerned with the data records in a
file. It knows only virtual and logical block numbers, directories
and other information, and the disk drivers involved. Therefore,
RMS-11 can direct file manipulation as long as it makes the proper
requests to the file control processor. To do so, RMS-11 maintains
the following structures, or I/0 units:

® Blocks -- The I/0 unit for sequential files is the block., You
can adjust the block count for each record access stream so
that more than one block can be moved during each 1I/0
operation.

In addition, you must decide whether records can cross block
boundaries. When records can cross block boundaries, RMS-11
can pack them with optimal density in the file because a
record can be stored in one or more blocks. This is called
block spanning. Figure 1-9 illustrates block spanning.

When records are restricted by block boundaries, each record
must be no more than 512 bytes (one block) long, and unused
bytes may be left at the end of each block.

® Buckets -- The I/0 unit for relative and indexed files is the
bucket. A Dbucket consists of one or more blocks that RMS-11
treats as a unit. Records can cross block boundaries but they
cannot cross bucket boundaries. Bucket size is a file
attribute that you specify when you create the file.

Buckets are an RMS-11 concept, so when RMS-11 initiates an
operation for a relative or indexed file, it requests the file
control processor to move a bucket by specifying the virtual
block number for the first block in the bucket and the size of
the bucket in bytes. Note that buckets are fixed within the
file; once created, buckets contain the same virtual blocks
at all times.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

I‘—BLOCK—**— BLOCK—>4«—BLOCK—>{«—BLOCK—>j=- BLOCK—Dr— BLOCK—P]
I

]

|
|
]
|
]

b — — —
R —

[
[
|
|
|
. DS LES A

A. RECOR s 4ik\“‘-asconos

THAN 512
BYTES

n I

B. RE EATER ‘k\~\\~_ R
CORDS GR REconns—”//)'ﬁ

THAN 512
BYTES

(-

C. VARIABLE-LENGTH
RECORDS

| N
RECORDS

ZK-1173-82

Figure 1-9: Records Spanning Blocks

You can also direct RMS-11l to request the file control processor to
place a file on a disk at a specific location. This is called
placement control and can improve performance by taking advantage of,
for example, tracks and cylinders.

RMS-11 provides access sharing; that is, your program can control who
can gain concurrent access to the data in a file and what type of
operations they can perform on the data. See Section 2.2.3 for more
information on access sharing.

The RMS-11 directory and file operations perform the file-level
functions. The directory operations affect file specification entries
in directories (not the contents of the files). They are:

® ENTER ~- places a disk file specification in a directory.

® REMOVE -- deletes a disk file specification from a directory.

® RENAME -- replaces an existing disk file specification with a
new one.,

@ PARSE -- returns file specification information to your
program.

® SEARCH -- examines one or more directories for a specified

file and returns the file specification and location.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

NOTE
Most high-level languages do not support
the directory operations. See vyour
high-level language documentation.
The file operations provide access to files. They are:

® CREATE -- creates a new file with the attributes you specify
and opens it for processing.

® OPEN -- makes an existing file available for processing.
® CLOSE -- terminates access to a file.

® ERASE -- deletes a file and removes its directory entry, if
one is specified.

® EXTEND -- increases the allocated size of an open file.
® DISPLAY -~ returns file information about an open file to your
program.

See RSX~11M/M-PLUS RMS-11: An Introduction, Chapter 4, for a more
detailed introduction to file processing. Chapters 3, 4, and 7 of
this user's guide describe specifically how the file operations work
depending on the file organization selected.

1.4 FILE ATTRIBUTES

When you create an RMS-11 file, either through a program (using the
CREATE file operation routine) or by using the RMSDES utility, you
must specify the following information:

® Medium -- Disk or magnetic tape. You can also create files on
unit-record devices, such as line printers and terminals.
Note that relative and indexed files are restricted to disk
devices. ‘

® File specification -- The name you assign to a file enables
RMS-11 to find the file later. Use the file specification
conventions specific to your operating system.

® Protection -- RMS-11 allows you to assign a protection code to
a file when you create it. Use the protection codes specific
to your operating system.

e File organization -- Sequential, relative, or indexed.

® Record format -- Fixed length, variable length, VFC, stream,
or undefined.

® Record size -- For fixed-length records, the size is the same
for every record in the file. For variable-length recorxds,
the size is the maximum length any record can be.

For VFC records, there are two size specifications: (1) the
fixed 1length of the control area, and (2) the maximum length
of the variable data area.

RMS-11 also keeps the length of the 1longest record actually
stored in a sequential file for variable-length and VFC
records.

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Block spanning (sequential files) -- Whether records can cross
block boundaries.

Bucket size (relative and indexed files) =-- The number of
blocks in each bucket. '

e Maximum record number (relative files) ~- The maximum number
of records that the file will contain.

e Keys (indexed files) -- The number of keys; the position and
size of each key; the data type for each key; and other key
characteristics. :

® Record-output handling -- You can specify three (mutually
exclusive) types of handling for records being written
directly to a unit-record device, although you need not
specify any:

- Carriage control -- The device driver inserts a linefeed
character as a prefix to each record and a carriage-return
character as a suffix to each record before passing it to
the device.

- FORTRAN -- The device interprets the first byte of each
record as a FORTRAN forms control character.

- Print file format (VFC records with a fixed header size of
0 or 2 bytes) -- RMS-11 interprets the first byte of the
header as a prefix for the record and the second byte as a
suffix for the record.

e File allocation -- You must specify two quantities:

- Initial allocation -- the size of the file in blocks when
it is created.

- Default extension quantity -- the number of blocks to be
added to a file when RMS-11 automatically extends it.

e Contiguity -~ Whether the disk space initially allocated to
the file is to be allocated in continuous, adjacent logical
blocks.

e Placement control ~-- Where the file is to be physically
located on the disk.

During the file creation process, RMS-1ll1 stores this information,
called the file attributes, in the file directory and, for relative
and indexed files, In the first blocks, or prologue, of the file as
well.

After creation, for the life of the file, RMS-1l1 gets information
about a file from the file itself. This offers several advantages:

e Most file attributes do not change.

e You can design your RMS-11 files offline. No program
accessing the files need specify attributes (except those that
may be required by high-level languages), because RMS-1l1l
requires only a file specification from a program to open a
file.

You can open an RMS~1l file with its file specification only.
After that, RMS-11 enables you to read the file attributes.
You can write a program or use the RMSDSP utility to display
those attributes.

1-19

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Note that some of the attributes are interdependent; that 1is, the
selection of one attribute directly affects, or restricts, other
attribute options. File organization, record format, and medium are
all interdependent. For example, if you select magnetic tape medium,
you must use sequential file organization. And if you select VFC
records, you cannot use indexed file organization and you must use a
disk device.

Table 1-1 lists the record format and file organization
interdependencies.

Table 1-1: Record Formats and File Organizations

File Record Format:
Organization Fixed Variable VFC Stream Undefined

Sequential:

Magtape Yes Yes No No No
Disk Yes Yes Yes Yes Yes
Relative Yes Yes Yes No No
Indexed Yes . Yes No No No

Chapters 3 through 7 discuss your file design. options in detail,
depending on your selection of file organization. Chapter 2 provides
information to help you make that selection.

1.5 PROCESSING BY BLOCK ACCESS

Your program can bypass RMS-11 record processing and process any
RMS-11 file in a mode called block access.

Your program can read or write blocks in a file either sequentially or
(on disk only) randomly by virtual block number (VBN). But your
program must be able to interpret the contents of those blocks.

See RSX-11M/M-PLUS RMS-11l: An Introduction for an introduction to
block access and processing. See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide for detailed information on block access and
processing.

1-20

CHAPTER 2

APPLICATION DESIGN

When you write an application program, you want that program to input
data, process 1it, store it, update it if necessary, and at intervals
output it in the proper formats.

You want all this to happen simply, quickly, and accurately. You must
therefore take the time to design your application by carefully
considering RMS-11 file structure and file and record processing
capabilities. Important RMS-11 considerations are data storage
medium, record format, file organization, access mode, allocation,
overlays, and so on.

If you do not consider BMS-11 capabilities when you design your
application, you may not get the best peformance possible from your
application because of the defaults that will be applied automatically
to your files (see Section 2.1).

Example: The first time one user created a file, she used a
high-level 1language program and took all the defaults. Then she
loaded records into the file; the process was quite lengthy.

However, when she re-examined the file and re-created it applying some
RMS-11 design considerations, the record insertion process went 10
times as fast.

Example: Some users, accustomed to programming with BASIC-PLUS record
I1/0, learned that RMS-11 uses 15 bytes of control data in each bucket
and 7 bytes of control data for each fixed-length record in an indexed
file (see Chapter 6). Then, because they were accustomed to working
with whole blocks, they set up single-block buckets (512 bytes) and
subtracted RMS-11 overhead (22 bytes) to come up with a record size of
490 bytes.

But when they used those files, the users were alarmed to see them
grow at high rates. They had not read that RMS-11 preserves its fast
sequential and alternate key access during random insertions by moving
records and leaving behind 7-byte pointers (see Chapter 5).
Therefore, when one of those 490-byte records was moved, it 1left
behind 7 bytes, which meant that no other record fit into that bucket.
Soon the file was filled with practically empty buckets that could not
be wused because the designers did not allow for the full implications
of RMS-11 structure.

If you develop an application with a high-level language, you probably
will not worry about RMS-11. You will accept the language's concept
of design, if any. It is possible, however, that the defaults the
language uses in 1its interface with RMS-11 are not well suited for
your application. ‘

APPLICATION DESIGN

This chapter presents general design considerations that apply to all
application designs and information that will help you make the first
important design decision: selection of a file organization.

2.1 WHEN TO DESIGN
There are two times to design an application:
1. Before you write the application, especially if you have:
e Large file(s)
® Many users simultaneously accessing the file(s)

e A high level of activity (many records read, written,
updated, or deleted in a given time period)

2. After you write the application, if you are not happy with
its performance.

Often, poor performance results from default values that are
inappropriate for your application. You can frequently f£find
improvements by studying the nature and source of the defaults and how
they affect the structure of your application and your file.

Basically, defaults have three sources:
1. Source language compilers

In many instances, source language compilers such as COBOL-81
or BASIC-PLUS-2 supply default values for RMS-11 file
attributes and/or facilities.

Example: RMS-11 does not calculate an optimal bucket size
for indexed files. Rather, the program creating the file
must specify a bucket size. When that program is the product
of a compiler, the bucket size can be explicitly specified in
the source code or it can be implicitly set by the compiler,
using a default value.

2. RMS-11

The interface between the RMS-11l routines and your program
has the same structure .in all tasks, regardless of their
source (PDP-11 COBOL-81, RPG, MACRO-1l1l, and so on). This
interface consists of control blocks (see the RSX-11M/M-PLUS
RMS-=11 Macro Programmer's Guide for details). The
information provided by your program in these blocks
effectively controls RMS-11, causing it to create, open,
access, and close files. However, when explicit information
is not provided, RMS-11l uses its default values.

3. Operating system

RMS-11 acts as an intermediary between your task and the
operating system. As such, RMS-11 can supply control
information for system functions such as protection codes.
However, if RMS-11 supplies no control data, the system uses
its defaults.

APPLICATION DESIGN

2.2 DESIGN CONSIDERATIONS

When you design your application, you are concerned primarily with
four design considerations:

l. Speed -~ You want to maximize the speed with which the
programs process data.

2. Space -~ You want to minimize the room for the data and the
task on disk and the memory the task takes to run.

3. Shared access -- You want your data to be exactly as
accessible to the people using the computer system as
necessary.

4. Ease of design -- You do not want to spend more time than
necessary writing the application.

Remember, the importance of design is proportional to the complexity
of the file organization. That 1is, design is least important for
applications using sequential files and most important for
applications using indexed files.

2.2.1 Speed

You can make many performance (speed) decisions before you have to
consider anything else, Therefore, the first criterion to apply
throughout the design process is minimize I/0 time.

The mechanics of the mass storage devices on your system consume most
of the time for any RMS-11 operation. The memory-resident routines
that prepare the data for I/0 or process it afterwards are very much
faster (one to three orders of magnitude).

An application's entire environment affects I/0 time:

¢ File structure -- A variety of file attributes affect 1I/0
time, including:

bucket size (for a relative or indexed file)

number of keys (for an indexed file)

number of duplicate key values (for an indexed file)
initial file allocation

default extension quantity

® File size -- The number of records in the file affects the I/0
operations required to scan a file sequentially or follow an
index.

¢ Program -- Your program affects I/0 time by requiring 1I1/0
operations for file operations (OPEN, CLOSE, and so on),
record operations (GET, PUT, and so on), and overlays.

e RMS-11 -- The RMS-11 routines can be structured as
disk-resident overlays or as memory-resident overlays.

e File control processor -- Besides requiring overlay segments
from disk, the file control processor can also request I/0
operations required to map virtual blocks of the file to
logical blocks on the storage device.

APPLICATION DESIGN

Device hardware -~ The storage device that contains the task
and data files is the primary contributor to the length of an
I1/0 operation. The type of device chosen (moving-head,
fixed-head, and so on) and the demands on it (amount of I/0
activity for that device within the system) are crucial to 1/0
performance.

Figure 2-1 illustrates this environment.

EVICE
DRIVER

HEAD MOVEMENT.
LaTency, anp OTHERS

DEVICE
ZK-1163-82

Figure 2-1: Time Factors in an I/O Operation

2.2.2 Space

RMS-11 requires space for three reasons:

1.

To store data in a file

To store the RMS-11 routines either (a) on disk when they are
not in use, or (b) in memory when they are being executed

To buffer data in memory while the task runs

APPLICATION DESIGN

2.2.2.1 Data Storage - The space RMS-1ll requires to store data is
proportional to the organization of the file, and to the processing
capabilities of that organization:

® Sequential file organization -- RMS-11l adds to the size of
your data an empty byte, if necessary, to align each
fixed-length, variable-length, or VEC record on an
even-numbered byte boundary. When the file contains
variable-length records, RMS-1l1l also prefixes a count field to
each record.

® Relative file organization -- RMS-11 constructs a series of
record storage cells based on the length of the records. The
cells are 1 byte longer than the fixed size of fixed-length
records or 3 bytes longer than the maximum size specified for
variable~length records.

® Indexed file organization -- RMS-11 adds to your data:
- An index for each defined key.
~ 15 bytes of formatting information for each bucket.
-~ A 7-byte header for each record.
-~ A count field for each variable-length record.

- Other overhead of varying lengths for records RMS-1l moves
during file activity and for deleted records.

You should keep the size of records to the minimum required for your
application.

2.2.2.2 Task Size - The space RMS-1l1 routines occupy in a task
depends on the method you use to link the routines with your program.
See Section 8.1 for more details.

2,2.2.3 Buffer Sizes -~ You can vary the size of the I/0 buffers
RMS~11 uses to store data in memory. Generally, the larger the
buffers, the faster the task processes data. See Section 3.5.3,
Section 4.5.3, or Section 7.4 for the file organization(s) you are
interested in.

2.2.3 Shared Access

Shared access revolves around the question: Who is allowed to read
from or write to a file? The answer involves your operating system's
protection codes, your access declaration, and your sharing
declaration.

System Protection Codes: Before you can access an RMS-11 file, you
must log into your computer system using an account number that will
allow you the kinds of access you need when your access request is
validated against the file's protection codes.

APPLICAT

ION DESIGN

Operating systems allow you to assign a protection code to each file

when it
who are

is created. This code describes concentric circles of users
allowed different levels of access to that file. See your

operating system documentation for specific protection conventions.

Figure 2

-2 illustrates the system protection concepts.

READ ACCESS ‘ WRITE ACCESS

SYSTEM

EXTEND ACCESS DELETE ACCESS

WORLD

RSX-11M/M-PLUS
7K-1166-82

Figure‘2-2: System Protection Concepts

Access Declarations: Your program must declare the types of access
you need by specifying the record or block operations it intends to

perform

on the file, as follows:

Read-only access is granted if your program specifies that
only FIND/GET or READ operations can be performed.

No PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations will be
allowed, nor will any other operation which would modify the
file (an EXTEND operation, for example, will not be allowed
for read-only access).

Read/write access is granted if your program specifies that
PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations can be
performed. FIND/GET and READ operations will also be allowed,
as will EXTEND operations.

Note that, in addition to any access declaration, a CREATE
operation always forces read/write access so that the newly
created file can be populated (using PUT operations for record
access or WRITE operations for block access).

APPLICATION DESIGN

Sharing Declarations: Your sharing declaration specifies the types of
access to the file that vyour program is willing to allow to other
programs that request access to the file at the same time that your
program is accessing it. These declarations can be:

e No sharing -- You do not want any other program to access the
file.

A no-sharing specification in your sharing declaration
overrides any other sharing specification you may also have
included, and guarantees that no other program will have
concurrent read/write access to the file. That is, no other
program will be able to modify the file.

Note, however, that it is not possible to guarantee that
concurrent read-only accessors will be denied access.

e Read-only sharing -- You are willing to allow other programs
read-only access to the file.

® Read/write sharing -- You are willing to allow other programs
read/write, as well as read-only, access to the file.

e Sharing with user-provided interlocks (sequential files only)
-- This specifies a special form of sharing among a group of
programs that includes any number of read-only accessors and
at most one read/write accessor.

User-provided interlocks offer a limited form of access
sharing of sequential files. If the file organization is
sequential, this specification in your sharing declaration
overrides any other sharing specification (except no sharing).
For any other file organization, this specification is
ignored.

NOTE

High-level languages may use slightly
different terms to designate the access
and sharing declarations, and may not
provide equivalents for all the sharing
options. See your high-level 1language
documentation.

Once the operating system's protection checks are passed, RMS-11 and
the operating system cooperate to determine whether the type of access
you request (your access declaration) and the type of sharing you
permit (your sharing declaration) are consistent with any other
current accessors of the file.

If no other tasks have accessed the file at the time that your program
requests access, your access request must only pass the system
protection checks to be granted. However, if one or more programs
already have access to the file, RMS-11 and the operating system will
use the access and sharing declarations of those programs along with
those of your program to determine whether your program will be
allowed concurrent access.

No-sharing and read-only declarations are processed as described above
for files of all organizations and access method (block or record).
In other cases, however, RMS-11 and the operating system interpret the
access and sharing declarations in the manner best suited to the
file's organization and the access method, as described in Section 3.4
for, sequential files, Section 4.4 for relative files, and Section 7.1
for indexed files.

APPLICATION DESIGN

NOTE

As noted, file sharing is a cdoperative
effort between RMS-11 and the operating

system. The RMS-11 processing
algorithms depend - upon the detailed
nature of this cooperation. If you

access a file concurrently with multiple

© programs, some of which use RMS-11 and
some of which do not, the results may be
unpredictable.

2,2.3.1 Bucket Locking - Any time a record is updated, accessing
programs must be assured that the data written to the file is current
until the record is re-accessed and the record updated again.

If no control is placed on access, two or more programs could access
the same record, one after the other, and update it, one after the
other. Only the last update would remain in the file. Access sharing
could thus impair data integrity.

To ensure data integrity, RMS-11 uses bucket locking for a relative or
indexed file when the file is open for write-shared access. From that
point, RMS-11 requests the operating system to lock each bucket read
from disk until RMS-1l explicitly releases the bucket. After a GET,
FIND, or mass-insert PUT operation, only the bucket containing the
data record remains locked. (See Chapter 7 for information on mass
-insertion.) While that bucket is locked, no other program can access
it. ‘

RMS-~11 requests the operating system to unlock such a bucket when one
of the following occurs:

e The GET, FIND, or PUT operation fails.

e The GET or FIND operation succeeds -- if the program has
declared read-only access to the file.

e The program initiates another record operation that accesses a
different bucket.

After the bucket is unlocked, other programs can access it.

Example: Programs A and B are write-sharing a file named RMSREL.DAT.
Both try to update relative record number 12. However, program B
initiates the prerequisite GET operation first, locking the bucket
containing the record. The operating system keeps program A from
accessing that bucket while program B uses it. After program B
updates record 12, RMS-1l1 unlocks the bucket and the operating system
allows program A to get record 12 (including program B's updated
data) . Figure 2-3 illustrates this example.

Bucket locking incurs costs: The operating system administers bucket
locking. It establishes, for each file, a list of virtual blocks that
are locked. The system must scan this list every time RMS-11 performs
an I/O operation and then either permit the operation or return an
error. In addition to this lock-list overhead, extra instructions are
executed to lock and unlock the buckets.

APPLICATION DESIGN

......
woy

RELATIVE
RECORD
NUMBER 12.

PROGRAM B

PROGRAM
B

PROGRAM A
TRY AGAIN

UPDATE
RECORD READ RELATIVE| ~

RECORD #12

PROGRAM
A

PROGRAM \
A

Y ReAD RELATIVE
RECORD #12

PROGRAM A

PROGRAM B PROGRAM B

DO NEXT
PROGESS
RECORD RECORD

READ RELATIVE
RECORD #12

2K-1164.82

Figure 2-3: Bucket Locking Example

2,2,3.2 Sharing among Access Streams - In addition to the bucket
locking used when programs allow sharing, RMS-1ll provides its own
version of bucket 1locking when a program accesses a file for
write-type operations. This locking allows multiple streams to share
the file. RMS-11 bucket locking works the same way as the locking
provided by the operating system, except that the 1locks can be
encountered only by different access streams within the same program.

The overhead for RMS-11 bucket locking is small.

APPLICATION DESIGN

2.2.3.3 Programming Considerations - For the greatest flexibility at
run time, you should assume that access to any record by your program
can be denied because the bucket containing the record 1is 1locked.

RMS-11

returns the error code ERSRLK when the bucket is locked by

another access stream in the same or in another program.

Therefore, you should use the following techniques when you write
RMS-11 programs that involve shared access:

2.2.4

Never keep a bucket locked longer than necessary. You should
follow any successful GET or FIND operation with another
record operation of any type as soon as possible. The second
operation unlocks the bucket 1locked by the read-type
operation,

Alternatively, you can release the bucket explicitly with a
FREE operation. A FREE operation releases only the bucket
locked by the access stream associated with the operation.

If your program detects an ERSRLK error (or its high-level
language equivalent), 1its error processing depends on the
number of access streams active on the file:

- Single stream -- Set up a 1loop that stalls, then
re-initiates the record operation until RMS-11l indicates a
successful completion.

- Multiple streams -- Do not set up a loop that continuously
re-initiates the record operation. You should either (a)
continue processing on the other streams, attempting the
record operation on the locked-out stream periodically, or
(b) release the buckets locked by all other streams, then
re-initiate the record operation that failed. Any
GET-UPDATE or FIND-UPDATE sequencés interrupted on the
other streams must be restarted, because the release of a
bucket destroys the record context.

Ease of Design

When you design and write your application, you should consider

yourself

and the person who will maintain the application. Keep the

following design guidelines in mind:

Keep things simple. You can apply this criterion to the whole
development process, £from program flowcharts to the record
layouts to file organization and design.

Example: From sequential through indexed, the RMS-11 file
organizations offer increasing capabilities, but they are also
increasingly complex. Choose the organization that supplies
enough capabilities, but no more. For instance, if you want
to randomly access a file by a single key only, you might wuse
a relative file and a hashing algorithm instead of an indexed
file.

Apply optimizations one by one until you reach a satisfactory
level of performance. Generally, further improvements are not
necessary.

APPLICATION DESIGN

Example: The optimization of performance of applications
using indexed files can be involved, but you do not have to
use every technique discussed in this manual. You should only
satisfy current performance requirements. For instance, when
an application program needed optimization, the indexed file
being read was made contiguous (see Chapter 6) and the RMS-11
overlay structure was changed (see Chapter 8). Execution time
dropped ' from 16 minutes to 8.5. Since this performance was
adequate, no further optimizations were considered.

Some optimizations apply to one type of record operation, but
not to others. Determine whether an optimization will benefit
your processing before you implement it.

2.3 DESIGN PROCESS

The first step in the design process is the selection of the file
organization. Section 2.4 presents information to help you make this
selection,

Once you have selected a file organization, go to the appropriate
chapter (s):

Sequential Chapter 3
Relative Chapter 4
Indexed Chapters 5, 6, 7

Each chapter discusses file structure (physical and conceptual) as
well as design considerations. Indexed files are the most complex to
design because of their power and flexibility.

After you read the file organization chapter(s), go to Chapter 8, Task
Building and Common Optimization Techniques.

Finally, apply the design considerations described in these chapters.
Write your application; create and populate the files, using the
RMS-11 utilities when they are useful; use the programs and files in
a simulated environment while you evaluate performance. You may have
to return to this manual, changing your design and/or combining
attributes and RMS-11 facilities in different ways, wuntil the
application runs to your satisfaction.

Good design is important to the success of your RMS-11 application.

2.4 SELECTING A FILE ORGANIZATION

Table 2-1 lists important features of each file organization --
sequential, relative, and indexed -- to help you decide which one(s)
you need. Table 2-2 points out advantages and disadvantages of each
organization.

The sections that follow the tables provide information about two of
the features of file organization -- record format and I/O techniques
—- to help you select a file organization.’

APPLICATION DESIGN

Table 2-1: File Organization Characteristics and Capabilities

Characteristics
and
Capabilities Sequential Relative Indexed
Medium
Disk Yes Yes Yes
Magnetic Tape Yes No No
Unit Record Yes No No

Recoxrd Formats

Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes
VFC (disk only) Yes Yes No
Stream (disk only) Yes No No
Undefined (disk only) Yes No No
Overhead per Record None 1 byte 7 bytes
Access Modes

Sequential Yes Yes Yes
Random Yesl Yes Yes
RFA access (disk only) Yes Yes Yes

Record Operations

CONNECT Yes Yes Yes
DELETE No Yes Yes
DISCONNECT Yes Yes Yes
FIND Yes Yes Yes
FLUSH Yes Yes Yes
FREE No Yes Yes
GET Yes Yes Yes
REWIND Yes Yes Yes
TRUNCATE Yes No No
UPDATE (disk only) Yes Yes Yes
PUT Yes Yes Yes
I1/0 Unit 1 or more Bucket Bucket
blocks
I/0 Techniques
Deferred write Normal mode Selectable Selectable
of operation
Multiblock count Yes Bucket size Bucket size
Multiple access No Yes Yes
streams
Multiple buffers No Yes Yes
Mass insertion No No Yes
Access Sharing2 Read-only Read/write Read/write
Other Features Block-span- Maximum record Areas
ning records number

1. For fixed-format disk sequential files only.

2. See exceptions in Section 2.2.3, and in Sections 3.4, 4.4, and
7.1.

APPLICATION DESIGN

Table 2-2: File Organization Advantages and Disadvantages

Organization Advantages Disadvantages
Sequential Simplest organization. To get a record, most
high-level languages
Optimal use of disk and must access all records
memory: before it (no access by
RFA or by key).2
e minimum overhead on
disk You can add recgords only
e block spanning at end of file.
Optimal if application Interactive process is
accesses all records on awkward: operator must
each run, except if file wait as a program searches
must be write-shared. for a record.2
Most versatile in record Certain compiled programs
formats: cannot access a record
already passed without
o exchange data with closing and re-opening
non RMS-11 systems file (REWIND is not
e compatible with available).
RSX-11M/M-PLUS
FCS filesl You can delete records
e compatible with ANSI only at end of file; use
magnetic tape format TRUNCATE record operation.
e compatible with
RSTS/E stream filesl Sharing normally restricted
to multiple readers.
Most versatile in storage
media; file is portable.
Random by key (RRN)
record access available
on fixed-format disk
sequential files,
Relative Random access in all Restricted to disk.

1.RMS-11 can read these file structures and return a record to

However,

languages.
Allows deletions.

Allows random GET and
PUT operations.

differences in

File contains a cell

for each cell number
between 1 and last
record in file; data may
not be stored densely.

your program,

data storage techniques among programming languages

can keep the program from properly interpreting the contents of that record.

2. These restrictions do not exist for disk sequential files with fixed-length

record format;

records in such files can be stored and retrieved using random

by key access, depending on your high-level language capabilities.

(Continued on next page)

APPLICATION DESIGN

Table 2-2 (Cont.): File Organization Advantages and Disadvantages

Organization Advantages Disadvantages
Relative Optimal if application Program must know rela-
(Cont.) accesses all records on tive record number or
each run and file must RFA of record before it
be write-shared. can randomly access the
data; no generic access

Random and sequential as in indexed file organi-
access with low overhead. zation.
Can be write-shared. Interactive access can be

awkward if you do not
access records by relative
number .

You can insert records
only into unused record
cells, but you can update
existing records.

RMS-11 does not allow
duplicate relative record

numbers.
Indexed Most flexible random Highest overhead on
access: disk and in memory.
e by any one of mul- Restricted to disk.
tiple keys or RFA
e key access by generic Least simple program-
or approximate value ming.

® you access records by
record contents

Duplicate key values
possible.

Automatic sort of re-
cords by primary and
alternate keys; avail-
able during sequential
access.,

Record location is
transparent to user.

Can be write-shared.

Potential range of key
values not physically
present as in relative
file organization.

variety of data formats
for keys.

APPLICATION DESIGN

2.4.1 Record Formats

RMS-11 supports all of the record formats described in the following
sections for sequential files, but restricts relative and indexed file
organizations (see Table 2-1).

2.4.1.1 Fixed-~-Length Format - Records in the file are the same size,
which is a file attribute. The fixed-length record format requires no
RMS-11 overhead.

RMS-11 limits fixed block-spanning records to 32,765 bytes, while the
minimum valid record is 1 byte of data.

2.4.1.2 Variable-Length Fo